Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump
نویسندگان
چکیده
District energy systems based on renewable resources help to reduce greenhouse-gas emissions and fossil-fuel use. Here, a multi-generation system combining cooling, heating, power is realized by employing organic Rankine cycle (ORC) absorption heat pump (AHP) technologies, which enable cascading the utilization of solar heat. The AHP can operate steadily providing heating hot water from thermal geothermal sources. A modelling approach presented evaluate energy, exergy, economic, exergo-economic performance above system. results show that could reach coefficient (COP) between 1.38 2.37 depending mode operation. yearly exergy efficiency tri-generation 56.5% 9.6%, respectively. Compared separate system, simple economic payback time 3.5 years. specific cost electricity produced 0.12 $/kWh, whereas much higher, or 0.31 $/kWh. sensitivity analysis performed shows inlet outlet temperatures together with irradiance have highest impact performance. This study provides new direction cost-effective sources in district systems. • Cascading generate multiple products. Energy, assessment different conditions. Specific estimates multi-products analysis. COP pump: for 2.16 water.
منابع مشابه
Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold
The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...
متن کاملCompare three different algorithms (MOPSO, SPEA2, NSGA-II) for Multi Objective Optimization of a novel Combined Cooling, Heating, and Power (CCHP) system based on organic Rankine cycle
Recently Debates about Energy and the issue of global warming have led to the use of new energy. One of the best options for this purpose is the use of a new hybrid system of power, heating and refrigeration, with its thermal source of solar and geothermal energy. In the present study, used a combined cooling, heating and power system based on the organic Rankine cycle and the Ejector Refrigera...
متن کاملTheoretical analysis of a novel combined cooling, heating, and power (CCHP) cycle
This study presents a theoretical analysis of a new combined cooling, heating, and power cycle by the novel integration of an organic Rankine cycle (ORC), an ejector refrigeration cycle (ERC), and a heat pump cycle (HPC) for producing cooling output, heating output, and power output simultaneously. Three different working fluids—namely R113, isobutane, and R141b—have been used in power, ref...
متن کاملExergo-environmental and exergo-economic analyses and multi-criteria optimization of a novel solar-driven CCHP based on Kalina cycle
The present research proposes and optimizes the performance of a novel solar-driven combined cooling, heating, and power (CCHP) Kalina system for two seasons—winter and summer—based on exergy, exergo-economic, and exergo-environmental concepts applying a Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Three criteria, i.e. daily exergy efficiency, total product cost rate, and to...
متن کاملExergo-environmental and exergo-economic analyses and multi-criteria optimization of a novel solar-driven CCHP based on Kalina cycle
The present research proposes and optimizes the performance of a novel solar-driven combined cooling, heating, and power (CCHP) Kalina system for two seasons—winter and summer—based on exergy, exergo-economic, and exergo-environmental concepts applying a Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Three criteria, i.e. daily exergy efficiency, total product cost rate, and to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy
سال: 2021
ISSN: ['1873-6785', '0360-5442']
DOI: https://doi.org/10.1016/j.energy.2021.120717